14 research outputs found

    Pattern Mining for Label Ranking

    Get PDF
    Preferences have always been present in many tasks in our daily lives. Buying the right car, choosing a suitable house or even deciding on the food to eat, are trivial examples of decisions that reveal information, explicitly or implicitly, about our preferences. The recent trend of collecting increasing amounts of data is also true for preference data. Extracting and modeling preferences can provide us with invaluable information about the choices of groups or individuals. In areas like e-commerce, which typically deal with decisions from thousands of users, the acquisition of preferences can be a difficult task. For these reasons, artificial intelligence (in particular, machine learning) methods have been increasingly important to the discovery and automatic learning of models about preferences. In this Ph.D. project, several approaches were analyzed and proposed to deal with the LR problem. Most of which has focused on pattern mining methods.Algorithms and the Foundations of Software technolog

    Preference rules for label ranking: Mining patterns in multi-target relations

    Get PDF
    In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-1, and by National Funds through the FCT — Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013

    Multi-interval discretization of continuous attributes for label ranking

    Get PDF
    Label Ranking (LR) problems, such as predicting rankings of financial analysts, are becoming increasingly important in data mining. While there has been a significant amount of work on the development of learning algorithms for LR in recent years, pre-processing methods for LR are still very scarce. However, some methods, like Naive Bayes for LR and APRIORI-LR, cannot deal with real-valued data directly. As a make-shift solution, one could consider conventional discretization methods used in classification, by simply treating each unique ranking as a separate class. In this paper, we show that such an approach has several disadvantages. As an alternative, we propose an adaptation of an existing method, MDLP, specifically for LR problems. We illustrate the advantages of the new method using synthetic data. Additionally, we present results obtained on several benchmark datasets. The results clearly indicate that the discretization is performing as expected and in some cases improves the results of the learning algorithms. © 2013 Springer-Verlag.This work was partially supported by Project Best-Case, which is co-financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Discovering a taste for the unusual: exceptional models for preference mining

    Get PDF
    Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes exceptional' varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under Grant Agreement Number 662189-MANTIS-2014-1

    Variance-Based Feature Importance in Neural Networks

    No full text
    This paper proposes a new method to measure the relative importance of features in Artificial Neural Networks (ANN) models. Its underlying principle assumes that the more important a feature is, the more the weights, connected to the respective input neuron, will change during the training of the model. To capture this behavior, a running variance of every weight connected to the input layer is measured during training. For that, an adaptation of Welford’s online algorithm for computing the online variance is proposed. When the training is finished, for each input, the variances of the weights are combined with the final weights to obtain the measure of relative importance for each feature. This method was tested with shallow and deep neural network architectures on several well-known classification and regression problems. The results obtained confirm that this approach is making meaningful measurements. Moreover, results showed that the importance scores are highly correlated with the variable importance method from Random Forests (RF)

    Exceptional preferences mining

    No full text
    Exceptional Preferences Mining (EPM) is a crossover between two subfields of datamining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where the preference relations between subsets of the labels significantly deviate from the norm; a variant of Subgroup Discovery, with rankings as the (complex) target concept. We employ three quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes ‘exceptional’ varies with the quality measure: the first gauges exceptional overall ranking behavior, the second indicates whether a particular label stands out from the rest, and the third highlights subgroups featuring unusual pairwise label ranking behavior. As proof of concept, we explore five datasets. The results confirm that the new task EPM can deliver interesting knowledge. The results also illustrate how the visualization of the preferences in a Preference Matrix can aid in interpreting exceptional preference subgroups

    An Ensemble of Autonomous Auto-Encoders for Human Activity Recognition

    Get PDF
    Human Activity Recognition is focused on the use of sensing technology to classify human activities and to infer human behavior. While traditional machine learning approaches use hand-crafted features to train their models, recent advancements in neural networks allow for automatic feature extraction. Auto-encoders are a type of neural network that can learn complex representations of the data and are commonly used for anomaly detection. In this work we propose a novel multi-class algorithm which consists of an ensemble of auto-encoders where each auto-encoder is associated with a unique class. We compared the proposed approach with other state-of-the-art approaches in the context of human activity recognition. Experimental results show that ensembles of auto-encoders can be efficient, robust and competitive. Moreover, this modular classifier structure allows for more flexible models. For example, the extension of the number of classes, by the inclusion of new auto-encoders, without the necessity to retrain the whole model
    corecore